37=x^2+(3x-5)+(x+2)=

Simple and best practice solution for 37=x^2+(3x-5)+(x+2)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 37=x^2+(3x-5)+(x+2)= equation:



37=x^2+(3x-5)+(x+2)=
We move all terms to the left:
37-(x^2+(3x-5)+(x+2))=0
We calculate terms in parentheses: -(x^2+(3x-5)+(x+2)), so:
x^2+(3x-5)+(x+2)
We get rid of parentheses
x^2+3x+x-5+2
We add all the numbers together, and all the variables
x^2+4x-3
Back to the equation:
-(x^2+4x-3)
We get rid of parentheses
-x^2-4x+3+37=0
We add all the numbers together, and all the variables
-1x^2-4x+40=0
a = -1; b = -4; c = +40;
Δ = b2-4ac
Δ = -42-4·(-1)·40
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{11}}{2*-1}=\frac{4-4\sqrt{11}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{11}}{2*-1}=\frac{4+4\sqrt{11}}{-2} $

See similar equations:

| 15-n=2n+9 | | 37=x+(3x-5)+(x+2) | | -2(-10-1y)-2y=20 | | 37=x^2+(3x-5)+(x+2) | | (4x+8)+x+(3x+4)=180 | | 6x*2-7x-5=0 | | 6(a-5=105 | | j÷6=8 | | 45x=945 | | 545=x+(0.07*x) | | 10=-1.4x+12 | | P(-1)=5x7-4x2+11x+17 | | x=100/7 | | 15/6=2x+x | | 1.8k=0.5 | | 6^4m=6^8m-2 | | X2+7x-720=0 | | 20t-2-2t=16 | | 12-r=-5 | | 0.8u=0.3 | | 26t-4-4t=96 | | 9t-4+3t=20 | | (x-1)(x+2)=44 | | 3x-2=2x+10=14 | | 9x=≥3 | | x²–7x–60=0 | | (x+12)+x=26 | | 4x-18=60 | | 7y+6y=+3y-9y | | 2i*7i=14i | | 2x+1.4=2x3= | | 1/4(4/9-4x)-7/9=6/9 |

Equations solver categories